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Abstract-The article deals with the determination of the effect of channel geometry on friction pressure 
losses and heat transfer in the developed turbulent flow in non-circular channels with hydraulically smooth 
walls. Universal dimensionless relationship for friction coefficient is formulated which takes into account 
the geometry effect expressed in terms of the geometry factor K~. The empirical relationship for the 
geometry factor K~ and channel shape is evaluated by two ways: by the integral geometry criterion L* and 
by the laminar geometry factor K~. 

Using an analogy between momentum and heat transfer the universal dimensionless relationship for the 
Nusselt number at isothermal flow is deduced from the universal criterion relationship for 5. 

An extensive experimental material was treated to evaluate and test these two universal relationships. 
In most cases compared an excellent agreement between experimental results and the universal criterion 

relationship was found. 
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NOMENCLATURE 

specific heat at constant pressure 
[J.kg-‘.deg-‘1; 

constant in equation (18); 
tube diameter, rod diameter [ml; 
inner and outer diameter of annulus [ml; 

= F, hydraulic diameter [m]; 

characteristic dimension of channel 

cross-section [ml; 
defined at the equation (27) [m]; 
cross-sectional area Cm’]; 

L(M,,), defined by equation (4) [ml; 

L 
L*, 

Nu, 

mean value of L in crosH section [ml; 
integral geometrical criterion; 

PY 
Pr, 

Re, 

2, 
s, 
u*, 
ii*, 

- 
W, 

= TNusselt number; 

static pressure [N. m-‘1; 
Prandtl number; 

w.d, 
= ~ Reynolds number; 

V 

wetted perimeter [m] ; 
heated perimeter [ml; 
rod center distance [ml; 
wall shear velocity [m. se’]; 
mean value of u* on the wetted nerimeter 

[ m.s-‘1; 
mean value of w in channel cross-section 
[m.s-‘I; 

+ w > inner-law velocity; 
x, Y, z, coordinates [ml; 

YT distance from wall along normal to wetted 
perimeter [ml; 

+ 
Y T inner-law dimensionless distance from wall. 

Greek symbols 

heat-transfer coefficient [W. m-' . deg-‘1; 

mean value of CI on heated perimeter 
[W.m-*.deg-‘1; 

excentricity; 
eddy conductivity [m* . s-l]; 
laminar geometrical factor; 
turbulent geometrical factor; 
thermal conductivity [W . m- ’ . deg- ‘1; 
molecular and kinematic viscosity 
[N.s.m-2;m2.s-1]; 
friction factor (Blasius); 
friction factor for smooth tube; 
wall shear stress [N. m-*1; 
density of fluid [kg. m- “I; 

mean value of 7 on wetted perimeter 

[N.m-‘1; 
mean value of T on heated perimeter 
[N.m-*,I; 

= :, relative wall shear stress; 

def?ned by equation (24); 
temperature factor. 



140 J. MAL~K, J. HEJNA and J. SCHMID 

INTRODUCTION 

THE KNOWLEDGE concerning pressure losses and heat 
transfer in the non-circular channels at a developed 

turbulent flow is based up to present practically only 
on empirical knowledge the experiments being essential 
means for its extension. Calculation methods 
elaborated in recent years by far do not permit to reply 

with a necessary accuracy on the question on the 
pressure losses and heat transfer in a channel which has 
not been previously examined experimentally. This is 

due to the fact that empirical information used in these 
methods as initial assumptions (e.g. the velocity 
distribution along the normals to the wetted perimeter 
and the distribution of wall shear stresses) may have 
limited validity and their generalization and applica- 
tion to different channel geometries may lead to 

incorrect results. 
The situation in this field is even so bad that the 

knowledge of each particular geometry represents an 
isolated point in the steady growing experimental 
material. The whole region of geometries that is very 

important for practice thus becomes under this 
situation a set of individual relationships some basic 
similarity relations between them, however, being 
absent. In addition the experimental material, which is 
already relatively extensive at present, has a 
fundamental shortcoming. By comparing the measure- 
ment results of different authors on the channels of the 
same geometry non-negligible differences appear 
between their results and sometimes even contradic- 
tions exist. The channel in the form of a smooth 
annulus may be named as a typical case. Though one 

of the simplest geometries is involved great differences 
exist between the criterion relationships for the friction 
factor and Nusselt number by different author. These 
differences attain even several tens of percent (for 
detailed comparisons see [l-3]). 

A number of reasons of these differences may exist, 
an appropriate evaluation of all factors intervening in 
the results, however, is not possible without detailed 
knowledge of experimental conditions and analysis of 
basic experimental results. We are of the opinion, 
however, that the main misleading factors are those 
which are essentially connected with the process 
investigated their misleading effect being a consequence 
of insufficient knowledge of the process studied in non- 
circular channels or a consequence of an inconvenient 
application of the knowledge of flow conditions in 
smooth tubes in non-circular channels. 

This applies especially for such notions as follows: 
1. Position and range of the transition region of flow 

and their dependence on inlet conditions. 
2. Length of the hydrodynamical entrance section. 
3. Length of the temperature entrance section. 
4. Effect of wall roughness. 

5. Effect of non-isothermal flow on heat transfer. 
These factors may have rather different quantitative 

and qualitative effect in non-circular channels and in 

the channels of circular cross-section. A more detailed 
analysis of these factors and some comparison of the 
conditions in circular and non-circular channels are 

carried out in [I]. 
The introduction of the hydraulical diameter as a 

characteristic channel dimension together with the 
assumption of the general validity of the relations 
determined initially for a circular channel may be 
considered as the first attempt to generalize experi- 
mental information. It is well known that the applic- 
ability of this method is limited towards the channels of 
more complex geometries. We have tried, therefore, to 
find new criterion relationships for the calculation of 

pressure losses and heat transfer in non-circular 
channels which would take into account the effect of 
geometry channel in a more adequate manner. We 
started here from a rich experimental material which 
has been obtained in the Nuclear Research Institute 
by the experimental research of pressure losses and heat 
transfer in channels having cross sections in the form 
of a smooth annulus, a longitudinally finned annulus 
(denoted as “A” geometry), and tubes with inner 
longitudinal fins (denoted as “B” geometry). Totally 
sixty strongly differing (with respect to geometry) 

channels were investigated [4.5]. Detailed knowledge 
of experimental conditions together with a great 
amount of experimental values served as a funda- 

mental basis for such attempt. 

THE FRICTION FACTOR 

It has been found by a detailed analysis of 

experimental results from pressure loss measurements 
that in all cases in which the perturbing effect 

mentioned above do not appear the friction factor for 
developed turbulent flow satisfies the relationship 

1 
~ = Cl logRe,iS+CZ 
:i-r 

(1) 

the constants C1 and C, being only a function of channel 
geometry. The friction factor is defined here by the 
equation 

where dh is the hydraulic diameter and w mean 
velocity. 

It has been shown by further analysis that the 
constants C, and C, are mutually dependent and that 
the general relationship (1) may be expressed by a 
simple transformation with an accuracy corresponding 
to the accuracy of the experiments by the well known 
Prandtl law of friction in a smooth tube. This 
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transformation corresponds to a substitution of the 
hydraulic diameter with a more convenient charac- 
teristic dimension. Denoting this dimension by do 

and by subscript “0” the quantities related to this 
dimension then the transformation mentioned may be 
described by following equations 

r Re dh 

z - Reo do 
K 

T 
(2) 

where tir is the geometrical factor for turbulent flow. 
The universal criterion relationship is then of the form 

KT J(k) 5 
= 210gR$ - 0.8. 

KT 

This fundamental result reduces the problem of 
finding the criterion relationship for 4 to the question 
on which geometrical quantity depends the geometrical 
factor K~. 

It means practically that a quantity must be found 
which would take into account by some convenient 
way the effect of individual parts of wetted perimeter 
on flow in the channel. Such quantity must have an 
integral character. 

An infinite number of such quantities may be defined 
without detailed knowledge of hydrodynamic con- 

ditions of turbulent flow on the basis of general ideas 
rind requirements. We solved, therefore, this problem 

in two different ways. 
In the first case such a quantity was sought which 

would have the simplest and logic definition, which 
would be relatively easy to evaluate and which has been 

applied at least partly in some earlier dealing turbulent 
flow. 

We have started from the quantity, after a number 
of unsuccessful attempts, which is used by several 
authors in their works as a measure for local 
turbulence and which is essentially interpreted as the 
mixing in semiempirical theory of turbulent flow in a 

circular tube. 
The dissipation effect of the elements of the channel 

wall on any perturbation in the region of a point M,, 
is inversely proportional in the first approximation to 
the distance of the point M,, from the given wall 
element. As the characteristic distance of the point Mr, 
from the channel wall may be kept the value: 

where r(M,,,&) is the distance of the point MO from 
the wall in the direction r#r. This relationship was used 
by Buleev [6] in his work. The quantity L, defined by 
equation (4) is very close to the measure of local 
turbulence which was derived by Obuchov [7] under 
the assumption of local similarity of turbulent 
processes. 

The quantity L is local one. The mean value of L 

in the given cross-section may be considered as the 

value characterizing the whole channel : 

z=; LdF. 
s F 

This quantity is a function both of the channel shape 

and its dimension. Therefore we have used as the 
geometrical criterion characterizing only the channel 
shape the quantity 

L* =t (6) 

which is called integral geometrical criterion. The 

quantity Lo is the value of L for the equivalent tube, 
i.e. 

Lo = 0.0887. d,,. 

The calculation method for L for any geometry is 
described in the Appendix. 

Table 1. Values of L* and rcL for some channel geometries 

Channel geometry L* KL 

s/d = 1.0 1.630 0.640 
1.025 1.240 0.854 
1.05 1.095 0.984 
1.1 1.000 1.129 

Infinite triangular array of 1.2 0.950 1.249 
parallel rods 1.3 0.930 1.310 

1.4 0.927 1.354 

_s/d = 1.00 1.580 0.645 
1.025 1.385 0.742 
1.05 1.265 0.828 

Infinite square array of 1.10 1.135 0.959 
parallel rods 1.20 1.010 1.124 

1.30 D946 1.229 
1.40 0.915 1,303 

Rectangle 

a/b = 0.0 0.939 1.225 
0.1 0.973 1.158 
0.2 1.004 1.095 
0.4 1.045 1.010 
0.6 1.065 0.97 
0.8 1.075 0.949 
1.0 1.077 0.943 

Smooth annulus 

d,fdf = 0.1 0.95 1.183 
0.2 0.941 1.204 
0.3 0.935 1.212 
0.4 0.933 1.217 
0.6 0.932 1.221 
1.0 0.939 1.225 

Isosceles triangle 

2a = 4.01 1.228 0.874 
7.96 1.209 0.881 

12.00 1.193 0.887 
22.30 1.165 0.902 
38.8 1.141 0.915 
60.00 1.132 0.915 



142 J. MAL~K, J. HEJNA and J. SCHMID 
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o-9 I.0 2-O 3-o 4.0 

L’ 

FIG. 1. Correlation between turbulent geometrical factor tir 
and integral geometrical criterion L*. 

0, smooth tube; 0. geometry A [4]; 0, geometry B [5]; 
$-, smooth annuli, dl/d2 > 0.4, [l]; V, square duct [20]; 
A, triangular ducts [18, 191; A, infinite triangular array of 
parallel rods [9- 141; 0, infinite square array of parallel 
rods [15], [17], [25]; q , elements of square array [15]; 

* flat channels with longitudinal fins [21]. 

The results obtained from experimental material are 
plotted as the function or =f(L*) of Fig. 1. 

In addition to experimental values of tir from the 

geometries A and B the values of tir from some other 
non-circular channels which were evaluated from 
papers of other authors were also comprised into these 

results. 
Considering average errors of the results of pressure 

loss measurements then the experimental points of 
Fig. 1 have a surprisingly small scattering and the 
dependence of or on L* may be estimated as 
unambiguous. It may be described by the equation: 

/ir = 0.268 +0.842. L*- “2. (7) 

The smooth tube is an exception from this relationship. 

The expression yields the value or = 1.11 instead of the 
correct value or = 1 for this tube. This inconsistency 
could not be explained satisfactorily till now. 

The equation (3) together with the equation (7) 
represent thus the universal criterion relationship for 
the friction factor in channels of arbitrary cross- 
sections with hydraulically smooth walls at a developed 

turbulent flow. 
A more detailed comparison of this relation with 

experimental results will be still given, 

In the second case we started from the assumption 
of the existence of a connection between the effect of 
geometry on pressure losses at laminar and turbulent 
flow. 

The friction factor for laminar fow is given by the 
equation 

where the constant C is a function of channel shape 
only. (For circular channel C = 64.) By means of the 
transformation analogous to the transformation (2) we 
can write formally the universal criterion relationship 
for < for laminar flow in the form 

where tiL is the laminar geometrical factor. 

We supposed, that the dependence of K* on channel 
shape can be expressed by means of K~. 

---_~ . . - - _ 

o-4 ’ 1 
02 0.4 0% ofl I-O 12 

FIG. 2. Correlation between turbulent geometrical factor 
xr and laminar geometrical factor Q. Symbols used the 

same as on Fig. 1. 

The results of the treatment of experimental data in 
the form of the relation tir =f’(~~) (see Fig. 2) con- 
firmed our assumption. This dependence is relatively 
unambiguous in the whole range investigated of the 
channel shapes, i.e. 

0.25 < tir, < 1.25 

or 

0.45 < Kr < 1.2 

and may be expressed by the equation 

Maximum scattering of experimental data from this 
dependence is lower than 5 per cent. Contrary to the 
equation (7) the relationship (10) is valid also for a 
circular channel. 

A comparison is carried out on Figs. 3-11 for the 
universal relationship (3) with the experimental results 
on some strongly complexed channel types which are 
important in practice. They comprise infinite triangular 
and square lattices of parallel rods, the elements of a 
square lattice, and excentric annuli. Other cases are 
given in [ 11. 
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FIG. 3. Comparison of experimental results from infinite triangular arrays with universal criterion relationship (3). 

~quations(lZland (IO) 

s/d 

FIG. 4. Dependence of relative friction factor on 
the rod spacing in infinite triangular array. 

- Equation(l2)and (7) 

___ Equation(l2) and (IO) 

0 [I41 

. IIll 

I 

Infinite I 

06 

FIG. 5. Relative friction factor for models of triangular 
array. 

c 3x1o-2 s/d-1~2,Equotion(3) 

FIG. 6. Comparison of experimental results from infinite square arrays with universal criterion 
relationship (3). 

p. 143 



FIG. 7. Comparison of experimental results from square 
array element channels [lS] with universal criterion 

FIG. 10. Comparison of experimental results from square 

relationship (3). 
array element channels [l5] with universal criterion 

relationship (3). 

FIG. 8. Comparison of experimental results from square 
array element channels [IS] with universal criterion 

relationship (3). 
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-Equcrians(l3)+(7) 
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0 0.5 IO 

E 

FIG. 11. Dependence of relative friction factor in 
smooth annulus on its excentricity. 

ti 1, I 

A perfect agreement of the relationship (3) with 
experimental results in the range of several orders of 
Reynolds number may be seen on Figs. 3 and 6-10. 
The values of the geometry factor Q for the 
geometries given are practically the same by the 
relationships (7) and (10). The differences are so smaII 
that the application of the relationships (7) and (10) 
cannot be resolved on the plots. 

lo* 
Re 

IO” 

The universal criterion relationship (3) may be 
substituted in the region of Re > lo4 with a simpler 
relationship 

< =@184.~)‘~.&-*‘~. Ulf 

The relative friction factor referred to the friction factor 
for a smooth tube is then defined by the equation 

FIG. 9. Comparison of experimental results from square 
array element channels [lS] with universal criterion _. _. 

retationshtp(3f. 
(12) 
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A comparison of theoretical dependences of the relative 
friction factor on relative rod pitch with experimental 
results for an infinite triangular lattice and for the 
models used to the study of local hydrodynamical 
conditions in a triangular lattice (see the scheme of 
Fig. 5) is shown on Figs. 4 and 5. The differences 
between the application of the relationships (7) or (10) 
are small in both cases. The scattering of expe~men~l 
values, however, does not permit to determine which 
of the two relationships mentioned fits better the real 
conditions. 

The excentricity effect on pressure losses in annular 
channels may be expressed analogically to the relation- 
ship (12) by the equation 

i” XT c > 1.2 

-= 

g(& = 0) -.- * Kr(& = 0) 
(13) 

On Fig. 11 this relationship is compared with the 
equation 

&j = (l-&)0-1’* 

which has been taken from [22] and which according 
to the authors approximates experimental results with 
sutKcient accuracy neglecting the weak effect of annulus 
curvature. The points by Tiedt [16] for al/d2 = 0.89 
and 0.5 are also given on the figure. The agreement 
of the equation (13) with experimental data is again 
good, only the values by Tiedt for dl/dz = 0.5 are 
higher than those by the two relationships given. 

HEAT TRANSFER 

Heat transfer in non-circular channels is essentially 
a more complicated problem than heat transfer in a 
circular channel. It is due to the fact that wall 
temperature in non-circular channels is not generally 
constant and its distribution over the heated surface 
depends both on channel shape and on the distribution 
of thermal fluxes. On the basis of the universal 
criterion relationship for the friction factor the 
universal criterion relationship for the Nusselt number 
for the case of isothermal flow may be derived using 
an analogy between momentum and heat transfer. 
This relationship may be considered as the limit 
solution of the problem given, which characterizes the 
effect of channel geometry on heat transfer. 

For this purpose we have used essentially the method 
by Wasan and Wilke [23]. 

By this method the authors mentioned have derived 
a criterion relationship for the Nusselt number for a 
smooth tube, which agrees excellently with experi- 
mental results within the range of Prandtl numbers 
Pr = 0.2 to 104. 

The principle of this method is based on the division 
of the flow cross-section into two regions having 

different transfer conditions and on an adequate 
description of the velocity and eddy viscosity E, 
distributions. The first region is in the vicinity of the 
wall and its boundary is determined by the equation 

y+ = 20. (14) 

The above authors have derived for this region (under 
the assumption of the validity of the empirical 
logarithmic velocity distribution in the turbulent core) 
theoretical relationships for the velocity and eddy 
viscosity distributions in the form: 

w+ = y+ -rl-04 x 10-4 x y+4+3.03 x lo-” x y*5 (15) 

h’ 4.16 x 1O-4 x yi3 -= -1.5.15x 10-6xy+4 

V 1-4~16x10-4xy+3+15~15x10-6xy+4’ (16) 

These expressions agree very well with empirical 
experiences. 

The turbulent core (y’ > 20) represents the second 
region, in which it is valid that 

and 

where rr is the eddy conductivity. 
It is assumed in both regions 

E, = ET. (18) 

This model may also be used for a non-circular channel 
under the assumption that the distributions of the 
velocity and the eddy viscosity near the wall are the 
same as in a circular channel. It may be demonstrated 
for isothermal flow (when the wall temperature is 
constant) [24] that between local heat-transfer co- 
efficient and local friction velocity following relation 
holds 

V@ 
- 

CL iG 
-=z 

1 +$J*,- 13) 

(19) 
P-G 

where 

Jzo = J ‘a dv+ 

0 I-. 
p,+: 

The integral Jzo is a function of the Prandtl number 
only and its values are tabulated in [23]. 

The relation (19) was essentially confirmed by the 
results of our measurements of the distribution of c( 
on a surface with longitudinal fins [24]. 

For the Nusselt number related to the mean value 
of the heat-transfer coeflicient on a heated surface S, 
following equation is then valid: 

Nu = $..Pr.f 
J 

2* 

Sr %I+ 
dS. (20) 

HMT Vol. 18. No. 1-J 



following equation should then be valid for our 

experiments 
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If we use again for < the relationship (11) then 

Nu = 0.023. K;' . Re“‘. Pr.k 
T 

s 7* 
x -pdS. (21) 

$. 1 +0’152. K;‘” .Rc/~.‘. ~*1:2(J20_ 13) 

For the evaluation of this relationship (especially at 

higher Prandtl numbers) the knowledge of the 
distribution of 7* is necessary. For the fluids with 

Pr -+ 1 the expression (21) may be simplified. 

Nu = 61.1 .&l +0.17.j4) 

where 

4 = K;’ 

for the geometry B. 
The results of the experimental data are shown on 

Figs. 12 and 13. Having considered the attainable 
accuracy of thermokinetical experiments it may be 

NLI = 0.023 
1 

k-l.‘. Re0’8. Pr - . T 

sT 

’ ,,[r*-0~152.h-~6.Re-0”.r*“5(J20-13)]dS. I 

(22) 
We may write then in the first approximation 

NM = 0.023.4. Re”’ 

x Pr[l-0~152.~0~5.Re~0”(.J20-13)] (23) 

where 

4 = ,+.zfJ 

t 
(24) 

and YT is the mean value of the shear stress on the 

heated surface S,. 
The condition of isothermal flow was not met in the 

investigation of heat transfer in the channels of the 
geometries A and B. A comparison of our experimental 
results with the expression (23) may be carried out 
only at some complementary assumptions. 

The conditions of the geometry B approached 
mostly the assumptions under which the expression (23) 

was derived. Thermal output along the model length 
was constant and air was selected as cooling medium 
(Jzo = 9.7). Temperature of the wetted perimeter was 

practically constant. Operational conditions were 
selected so that the temperature factor tj (defined as the 

ratio of absolute temperatures of the wall and fluid) 
was the same as possible for all models at all operational 
conditions. Its mean value from all measurements was 
1,6 = 1.27. 

Let us assume in the first approximation that the 

effect of the temperature factor in non-circular channels 
may be expressed by the Kutateladze relationship, 
which has been derived for a smooth tube, in the form 

The effect of the variation of the Reynolds number in 
the range of two orders of magnitude on the second 
term of the right side of the equation (23) may be 
neglected. To compare experimental results with the 

relation (23) it is then sufficient to evaluate the 
dependence Nu =f(+). At the selected Re = 5 x 10“ 

(26) 

Nu 6o 

0.4 0.5 O-6 0.7 oe 0.9 I.0 /I I .2 

FIG. 12. Relation Nu =,f(+) for geometry A and B 
when C$ = 4(C). 

100 
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50 

40 

0.4 0.5 0.6 07 0.8 0.9 i-0 I,, 1.2 

9( K‘) 

B when 4 = 4(tiL). 
FIG. 13. Relation Nu =j(4) for geometry A and 
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stated that the results from the geometry B agree very 
well with the relationship (26) both with the use of the 

relation (7) and (10) for determining or. [In the first 
case C$ is denoted as $(L*), in the second case as 
&KJ.] The results from smooth circular channels also 
satisfy very well the relationship (26). 

The case of the geometry A is substantially more 
complex. The flow cross-section is represented by a 
doubly connected region the heated surface being only 
the surface of the finned kernel. Temperature on the 
perimeter of the finned kernel was practically constant. 
Kernel temperature and the temperature of the external 

tube, however, differred essentially. Otherwise the 
experimental conditions were the same as in the 

geometry B. Though the experimental conditions 
differed from those of isothermal flow we started by 
treating experimental data from the assumption that 
even in this case the equation (26) holds. In the 
definition equation (24) we put 

(27) 

This equation may be understood as a condition of 

force equilibrium. The quantity dT has the meaning of 
the hydraulic diameter related to the part of the flow 
cross-section, which was bounded by heated surface 

on one side and by the line of maximum values L(M,,) 
on the other side [in the case when ICY is defined by 
the equation (7)] or by the line of maximum 
velocities [when using the relation (lo)]. The exponent 

n was taken as a constant in the first approximation 
and evaluated from experiment. In the first case 
n = 1.42, in the second n 7 1.73. 

The results obtained are shown on Figs. 12 and 13. 
Also in this case the results yield a good idea about 

the effect of the channel shape on heat transfer. 
For completenessit is necessary to mention, however, 

that by some experimental results [l] the exponent 
of the temperature factor in the equation (25) will also 

depend probably on the channel shape. 

CONCLUSIONS 

The universal criterion relationship (3) together with 
the equation (7) or (10) describes the dependences of 

the coefficient of friction losses on Reynolds number 
and on channel geometry in the channels of any cross- 
section with hydraulically smooth walls. This was 
confirmed by the comparison with all available data 
from literature as far as these data were obtained 
really in conditions of a fully developed turbulent 
flow. 

The universal criterion relationship for Nusselt 
number (20) for isothermal flow represents the limit and 
characteristic solution of the problem of heat transfer 
in non-circular channels. The relationship (23), which 
is a simplification of the relationship (20) for the fluid 

with the Prandtl number approaching to one, agrees 
well with experimental results. Both relationships 
enable a relatively accurate evaluation of the influence 

of channel shape on heat transfer. 
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APPENDIX 

Calculation of L(M,) and of the Laminar Velocity Field 

The calculation of all quantities was accomplished on the 
GIER computer. A program was compiled to calculate the 
values L, which makes possible the calculations for any two- 
dimensional region. The boundary of the region investigated 
is approximated there with any number of line sections and 
circular arcs. The integral in the equation (4) is evaluated 
by numerical integration over the region limited by 
symmetry axes. In the case of the beam and axis intersection 
the condition of reflection is applied and thus the same 
effect is obtained as for the whole region. A quicker 
calculation method starts from the fact that in the case of 
the region limited by linear sections the integral (see Fig. 
14a) 

has the solution 

J(WJ = 
sin~2-sinc(, 

I 

Dividing the boundary of the region investigated (which can 
be considerably complex and exhibit self-screening) to i line 
sections the value L may be calculated from the relation- 
ship 

L(MO) = L-. 
T Ji(Mo) 

This method is three to five times quicker than the original 
method. The mean values f; were calculated by Gauss 
integration formula. 

Laminar flow in the channels of non-circular cross- 
sections was solved numerically by the mesh method [26]. 
A set of programs which were compiled to this purpose 
make possible the calculation for any two-dimensional 
region. The difference equations are solved there by the 
Peaceman-Rachford iteration method. For the calculation 
in strongly complicated channels the finite elements method 
appeared as more convenient with respect to the accuracy 
of calculations and computer utilization. The method and 
the programs are described in details in [27]. 

The Calculation of dT for the Doubly Connected Region 

The line of maximum values of L or the line of maximum 
velocities at laminar flow was determined by following way 
(see Fig. 14b): At first, the points A and B with maximum 
L value (or w) were determined on symmetry axes. The 
trajectory orthogonal to the level curves L = const. (or 
w = const.), which is the projection of the slope curve passing 
on the top of the plane L(x, y) [or w(x,y)] must pass through 
these points with respect to symmetry conditions. In the 
calculation we start from the point A the initial direction 
of the required trajectory being $ = n/2. At a certain distance 
AS from the point A the values L (or w) for the angles 
$ -A$, $, $ +A$ were determined. A parabole of the 
second degree passing through these three points was 
constructed. Its maximum is on the wanted trajectory. 
Analogically we proceed up to the point B. Then the value 
dT was determined from the area limited by this trajectory 
and by the heated surface. 

FIG. 14a. FIG. 14b 
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R&me-Cet article traite de la determination de l’effet de la geomttrie du canal sur la perte de pression 
et sur le transfert thermique dans I’ecoulement turbulent etabli dans ces canaux non circuiaires, a parois 
hsses. On donne I’expression du coefficient de frottement en tenant compte de I’effet de la gtometrie 
par un facteur geomttrique x,. La relation empirique entre le facteur geometrique x, et la forme du canal 
est dtterminee de deux facons: par le critere integral L et par le facteur laminaire xL.. 

Utilisant une analogie entre transferts de chaleur et de quantite de mouvement, l’expression du 
nombre de Nusselt est dtduite du crittre universe1 [. 

On considtre les rtsultats exptrimentaux pour evaluer et tester les deux expressions universelles. Dans 
la plupart des cas. on trouve un excellent accord avec les resultats exptrimentaux. 

DRUCKVERLUST UND WARMEtiBERTRAGUNG IN NICHT-KREISFGRMIGEN 
KANALEN MIT HYDRAULISCH GLATTEN WANDEN 

Zusammenfassung-Der Einflug von geometrischen Verhlltnissen auf den Reibungsdruckverlust und 
auf die Warmeiibertragung in der ausgebildeten turbulenten Strijmung in nicht-kreisfiirmigen Kaniilen 
mit hydraulisch glatten Wlnden wird ermittelt. Eine allgemeine dimensionslose Beziehung fiir den 
Reibungsfaktor wird aufgestellt, in der die Wirkung der geometrischen Verhlltnisse in Form eines 
Geometriefaktors K, berticksichtigt wird. Die empirisch aufgestellte Beziehung zwischen dem Geometrie- 
faktor K, und der Form des Kanals wird auf zwei Arten ausgewertet: durch das integrale Geometrie- 
kriterium L* und durch den laminaren Geometriefaktor K~. Die allgemeine dimensionslose Beziehung 
fur die Nusselt-Zahl in isothermen Stromungen wird unter Verwendung einer Analogie zwischen 
Impulsaustausch und Wlrmeiibertragung aus der allgemeinen Kennzahlen-Gleichung fir < abgeleitet. 

Umfangreiche experimentelle Ergebnisse wurden ftir die Bewertung und Uberprtifung beider allgemeinen 
Beziehungen verwendet. Die tibereinstimmung zwischen experimentellen Werten und Ergebnissen aus 

der Kennzahlen-Gleichung war in den meisten Fallen ausgezeichnet. 

IIOTEPPI J@BJIEHHI H TEI-IJIOOBMEH B KAH&IAX HEKPYI-JIOFO CEYEHMR 
C I-H~PAF%JIll=IECKH XGIjIKWMEI CTEI-IKAMPI 

Assoxaqsus - B cTaTbe sicc.nemeTca n.nmnnie reoMeTpHH rcasima ria noxepsi ~annensrn H Tenno- 
o6Merr B ~~~BETOM Typ6yneHnloM Te¶eIwi B ~awxwi HeKpyrnoro CeseHHII c rqqpwewi 

rlWIWHMH CT'ZIKaMEi.C~OpbQ'JlEQOBaHO yHEBepcaJIbHOe 6e3pa3MepIiOe COOTHOJIIeHEe~JISi KOC@@i- 

wieHTa TpeHHn, B K0T0p0~ xununine reo~eTpm yYHTbIBaeTca c noMomm ~ophw$aKTopa KT. 

3hf115ip~~e~K0e CoomoInewie n.u~ KT H *pubs KaHana paccwiTbIxieTcn AB~MII cnoco6abfH: c 

IIOM0IW.H) SiHTeI'palIbHOrO ~OMeTpEWCKOrO KpETepEKL* H JIaMSiHapHOrO 4$OpM-&KTOpa KL. 

~CIIOJIb3yR WaJIOrSihJ Mew UepeHoCOM EMQ'JKbca B TeIIJIa, yHEU3epcaJIbHHoe 6e3pa3MepHOe 

CoOTHOXIIeHAe &WI ¶KCna HyccenbTa B H30TepMH'ieCKOM Te'ieHHH BbIBOJJIfTCSl H3 yHEBepcWlbHOr0 

KpHTepnanbHoro cooTHomeHsin~a~. 

AJU OqeIfKH H rIpoBepKE w&ix AB~x yHHBepGUIbHbIX CoOTHOIIIeHti IIpoBeAeHa o6pa6oTKa 

o6mapHoro 3KClIepHMeHTaJIbHOrO MaTepHaJIa. B 6OJIbIIIEHCTBe CJlyWeB CpaBHeHEe IIOKa3aJIO 

ITpeKpaCHOe COBlIaAeHAe 3KCl'IepHMeHTaJIbHbIX AaHbIX C yHHBepCaJlbHbIM KpETepEaJIbHbIM COOTHO- 

nIeHneM. 


